21st ANNUAL LEAKAGE CONFERENCE 8-9 FEBRUARY 2021

Data and the Leakage Team Forum

Data and the Leakage Team Forum

- Chaired by Pauline Walsh, CEO, Affinity Water and Chair, Leakage PIC
- The application of data science in the delivery of Yorkshire Water's leakage ambitions
 - Chris Smith, Data Science Manager, Yorkshire Water
 - Carol Smith, Data Science Manager, Yorkshire Water
- Data and leakage at Dwr Cymru/Welsh Water
 - Chris Rees, Leakage Strategy Manager, Dwr Cymru
 - Dr Willow Smallbone, Data and Analytics Manager, Dwr Cymru

The application of Data Science in delivering Yorkshire Water's Leakage ambitions

Carol White & Christopher Smith Yorkshire Water – Data Science

Data Science at Yorkshire Water

Carol White

Yorkshire Water – Data Science

Data Science at Yorkshire Water

Tactical

Stand-alone projects, dashboards, forecasting (reactive to immediate business needs)

Data Transformation

Data Centric Organisation

YorkshireWater

Approach

Key guiding principles

- Actionable insight
- Enable strategic change
- Sustainable
- Accessible to all
- Customer-focused

Agile delivery

- Minimise risk
- Frequent re-prioritisation
- Deliver MVPs
- Adaptive

Key Considerations

- Technical enablers
- Multiple delivery streams
- Business benefit & prioritisation
- Data ownership & governance

CASE STUDY

Customer Emotion Model

- Custom-built Natural Language Processing model to capture emotion from customer feedback
- Fully automated user-friendly dashboards
- Partnered with business change team to realise benefits
- Enables colleague self-service and proactive intervention
- Potential to apply to new data in data mart

Potential Applications of Data Science in the Leakage Arena

Christopher Smith

Yorkshire Water – Data Science

Hindsight: Benefit Assessment

What

- Quantifying the benefit of existing & new approaches to leakage management
 - ≻ ALC
 - Enhanced Telemetry
 - Pressure Optimisation

Why

- Evaluating the effectiveness of leakage activity
- Assessing the cost-benefit of a proposed solutions
- Establishing the potential for wider deployment full benefit potential
- Identifying the opportunities for further improvement

Key Considerations

- Transient nature of leakage
- Trial versus BAU
- Attributes that determine benefit

Foresight: Forecasting

What

• Statistical modelling to predict leakage performance in-year and beyond

Why

- Business planning
- Determining operational targets
- Monitoring risk

Key Considerations

- Understanding relationship between external factors and leakage
- Understanding benefit of activity (AMP forecast)
- Embracing & reflecting uncertainty

2011/12
2014/15
2017/18

2018/19

Insight: Analytical-driven Interventions

What

 Analytical solutions to enable the prioritization & evaluation of leakage activity

Why

- Assisting in decision-making process
- Identifying problem DMAs for escalation
- Providing performance KPIs

Key Considerations

Deliver little & often

- Incorporate attributes of benefits
- Integrated view of the network
- Data availability & veracity
- Data velocity

Thank you

Data Science at DCWW and Leakage Location Predictor

Chris Rees (Leakage Strategy Manager)

Willow Smallbone (Data and Analytics Manager)

The Journey

E

Data Science Idea

Current challenge

When a pipe leaks/bursts, the exact location of the leak is not known. It can take some time to identify the exact location of the leak and is quite a manual task, delaying any resolving action to be taken.

Identify locations where a leak is most likely to be and provide an optimised route for locations to be inspected within a DMA

- Predict the locations of a leak
- Provide a minimal route in which to inspect the most likely leakage locations
- Create an application to be used by inspectors that outputs the locations to be inspected and provides the minimal route which should be taken

Project Nemo

Benefits

Phase 1	CARDIFF UNIVERSITYProof of concept MSc projectPRIFYSGOL CARDIPwith Cardiff University	Produce a model to identify leak location
Phase 2	DMA Clustering	Group DMAs based on similar characteristics
Phase 3	Leakage Location Predictions	Produce a model for each group of DMAs to predict leak location
Phase 4	Route Optimisation	Provide the best route to visit the predicted leak locations
Phase 5	Application	Develop an application for operations to use

Group DMAs based on similar characteristics

- Clustering DMAs based on the similar characteristics relating to leakage
- Identified similar DMAs into three clusters
- Descriptive statistic analysis is performed to gain further insight into the leakage data outputs

9

Predict the pipes that are most likely to be the cause of a given leak for each group of DMAs

- Created a model for each group of DMAs by using multiple data sources in order to predict the pipes that are most likely to be the cause of a given leak
- Tested several different statistical algorithms and determined the methodology that provided the most accurate results

Create the optimal route for visiting potential leak locations

- The problem that is being solved is a variation of the Travelling Salesperson Problem
- A genetic algorithm has been identified as the best algorithm for the problem
- Weighted distances are used to take the risk of each pipe having a leak into consideration

Develop a user interface

 Develop a user interface for operations to use to enable them to follow the optimal route to check all potential leak locations

