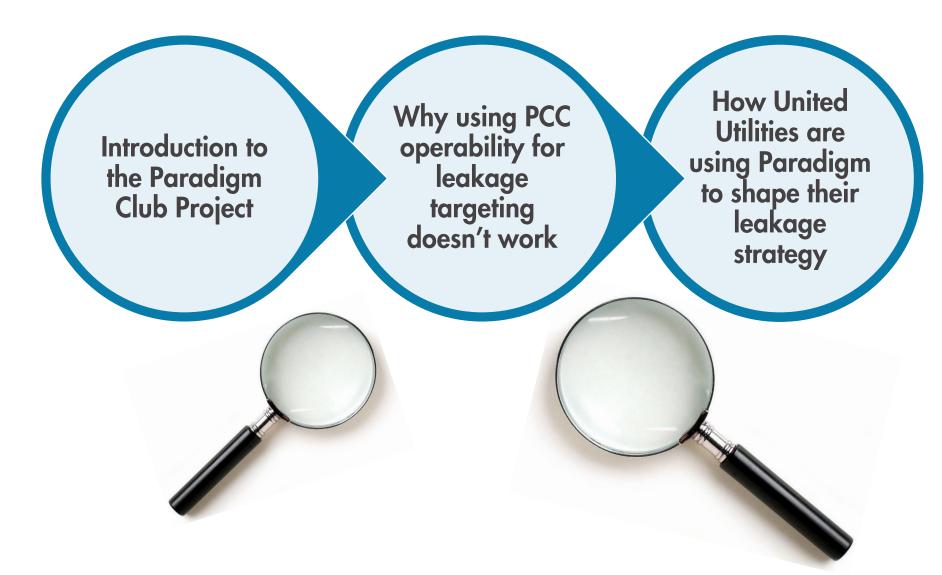
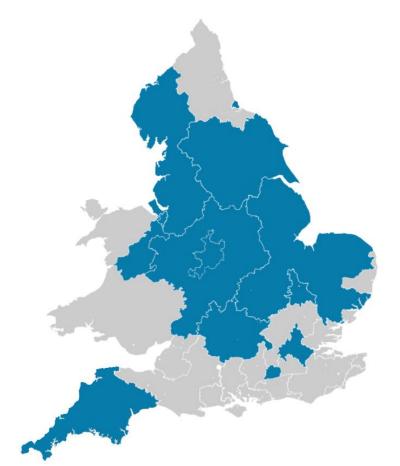


The Paradigm Club Project


Challenging operability and shaping our leakage strategy

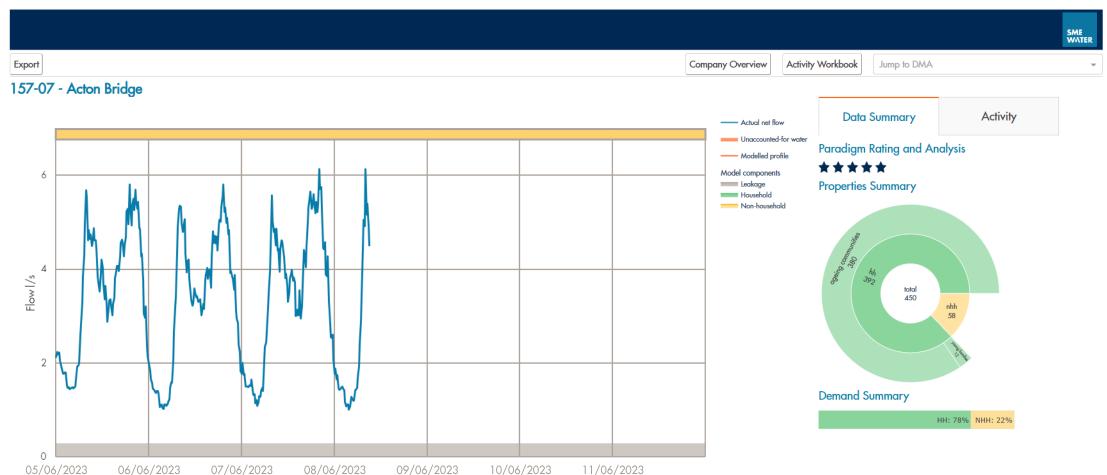
03/12/2024

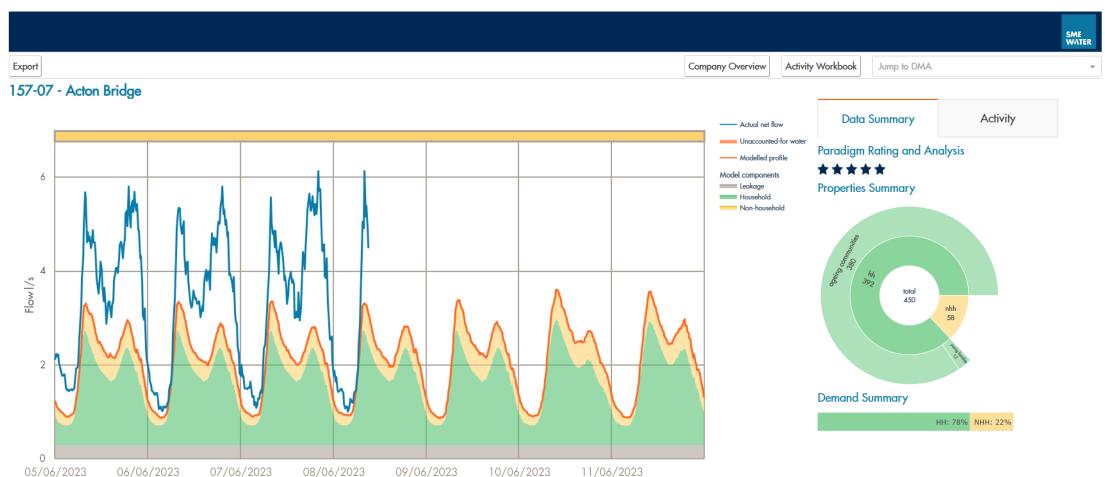
Agenda

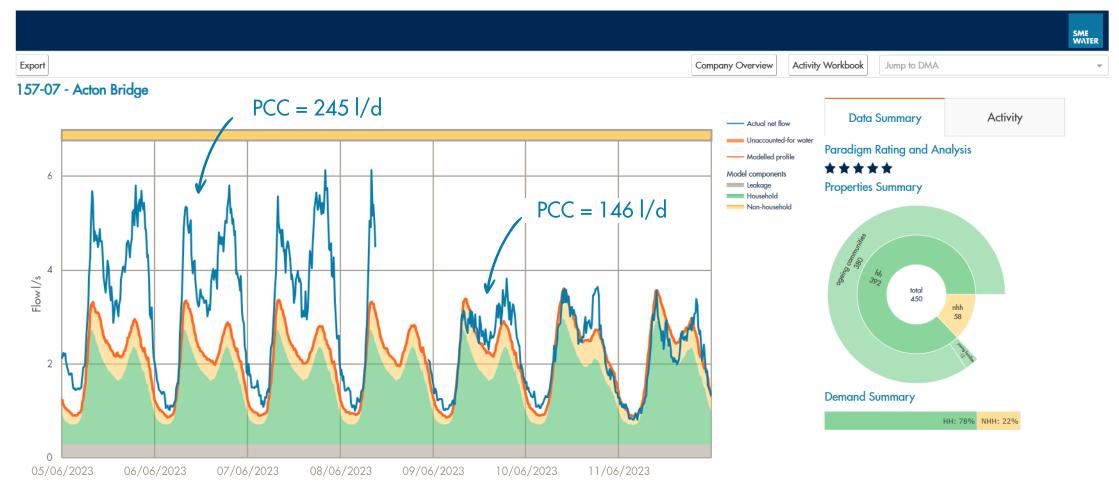


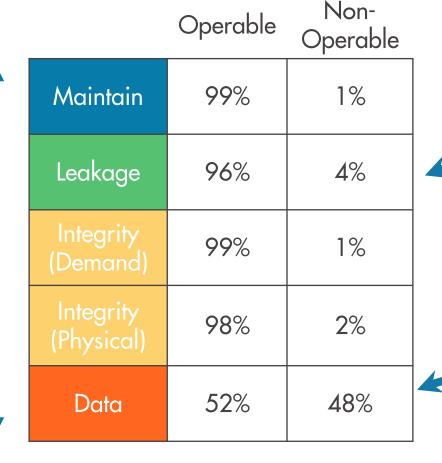
Club Project members

- Four companies came on board at the start of the 3-year Paradigm Club Project in October 2022.
- Yorkshire Water, Thames Water and South West Water joined the second year of the project.
- We now analyse data for DMAs covering 70% of properties in England with Paradigm.





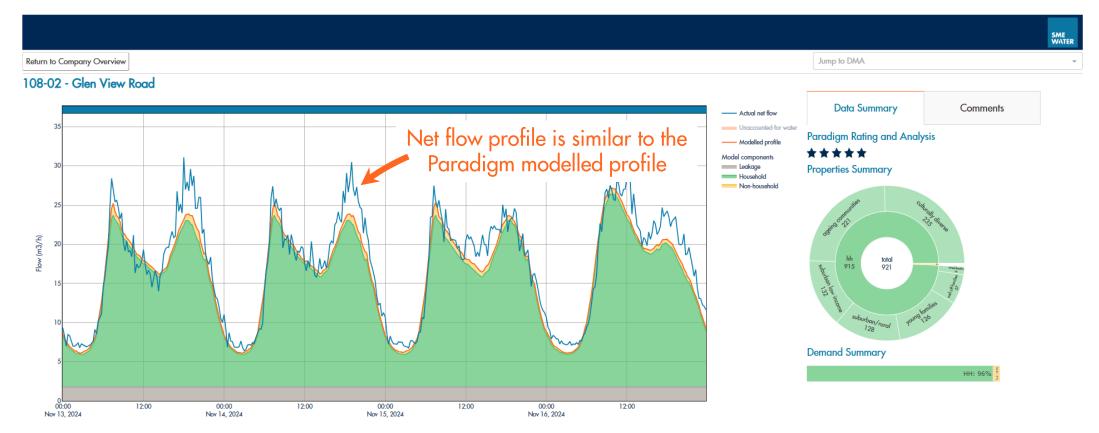




Paradigm uses 5 categories for DMA analysis

DMAs are typically operable in four of the categories

The majority of the nonoperable DMAs sit in the Data category


Operable Non-Operable

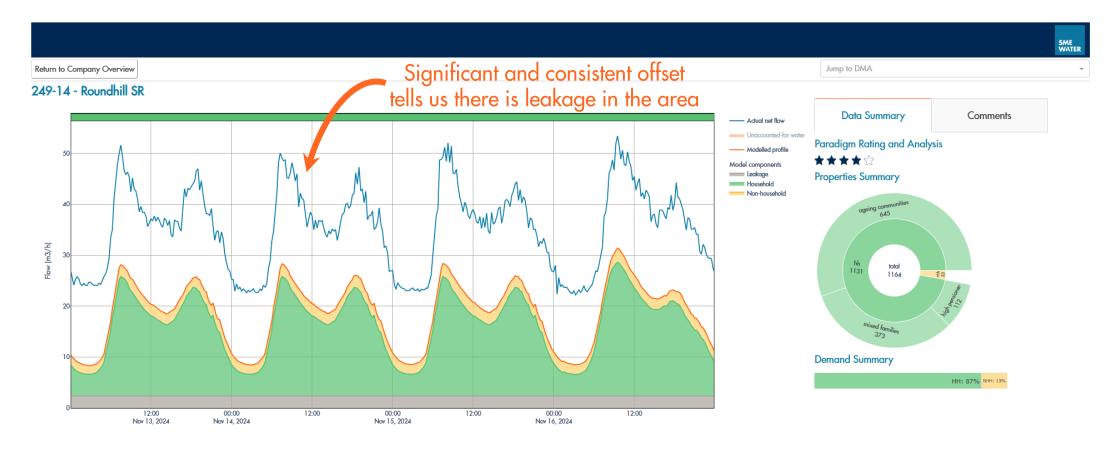
Maintain is for DMAs that match the model well

Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

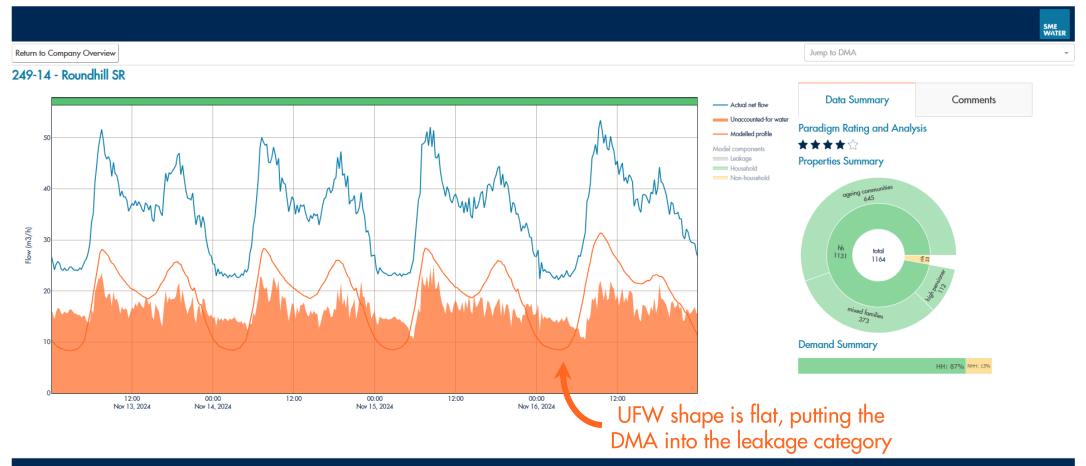
Operable

Non-Operable

Maintain is for DMAs that match the model well


Leakage is used where we think there is a leakage problem in the area

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

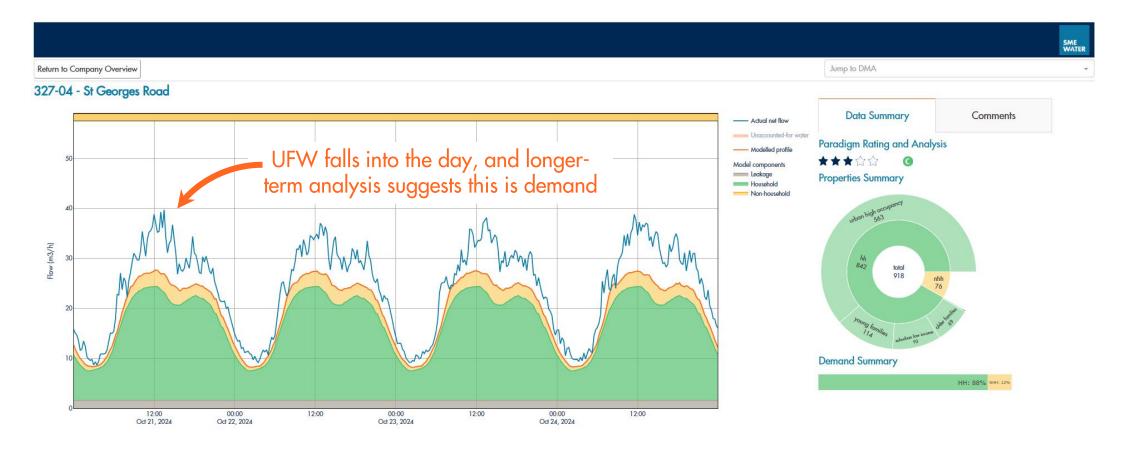


Leakage is used where we think there is a leakage problem in the area

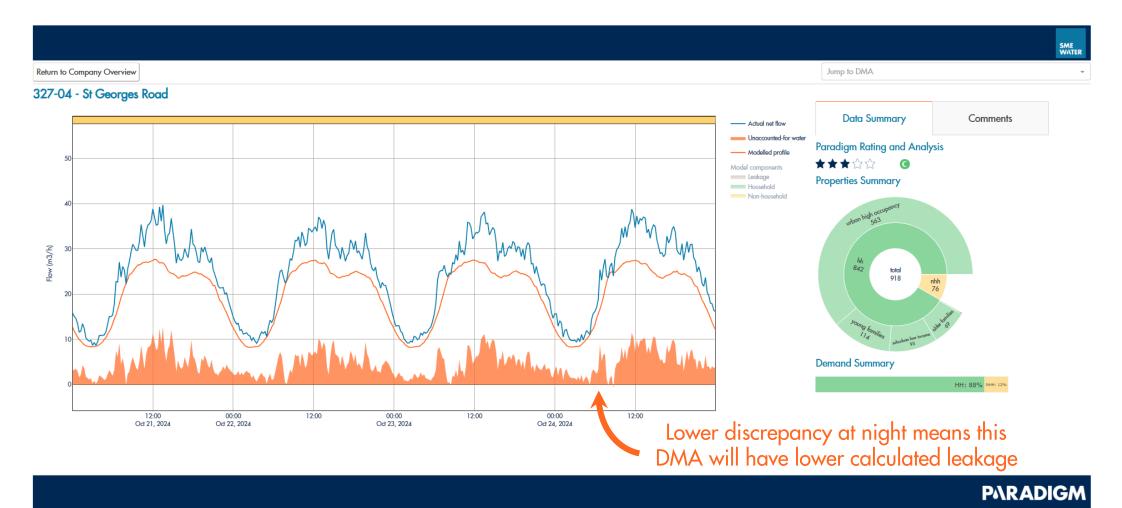
	Operable	Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

Onoralala

Non-


We put DMAs into Integrity when we think there is a problem with demand or the DMAs boundary

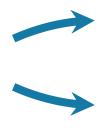
	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%





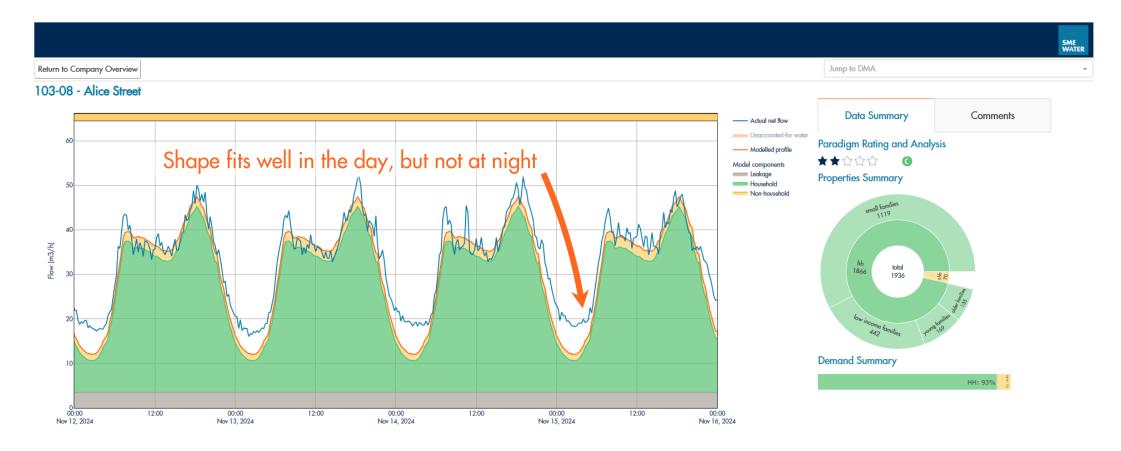
We put DMAs into Integrity when we think there is a problem with demand or the DMAs boundary

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%



We put DMAs into Integrity when we think there is a problem with demand or the DMAs boundary

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%



We put DMAs into Integrity when we think there is a problem with demand or the DMAs boundary

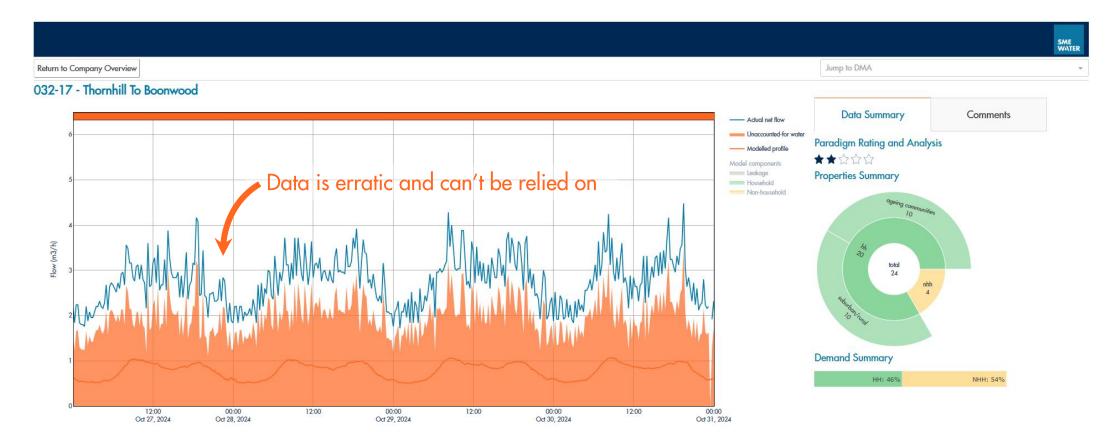
	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

N I - --

	Operable	Operable	
Maintain	99%	1%	✓
Leakage	96%	4%	√
Integrity (Demand)	99%	1%	?
Integrity (Physical)	98%	2%	x
Data	52%	48%	

Non-

The Data category is used when the net flow bares little resemblance to the modelled profile



	Operable	Non- Operable
Maintain	99%	1%

4% Leakage 96%

Integrity 99%

2% 98%

little resemblance to the modelled profile

The Data category is used

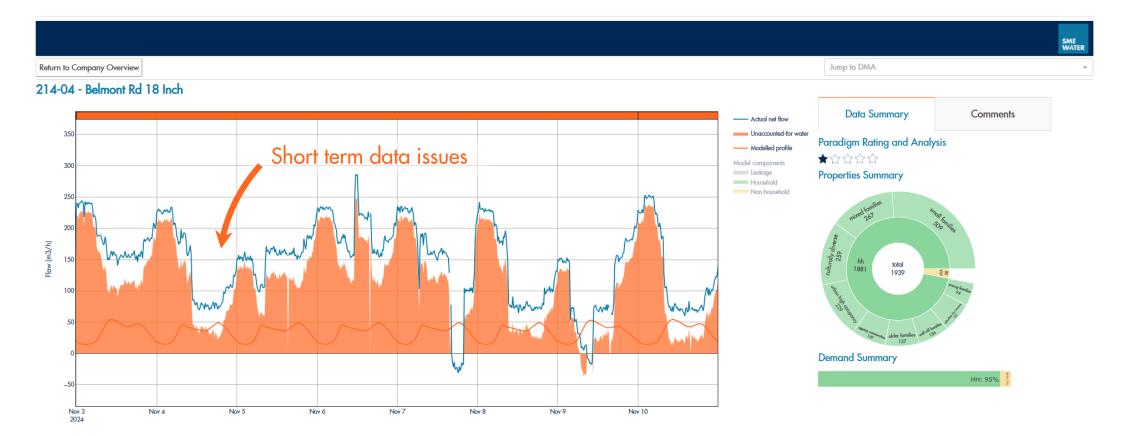
when the net flow bares

52%

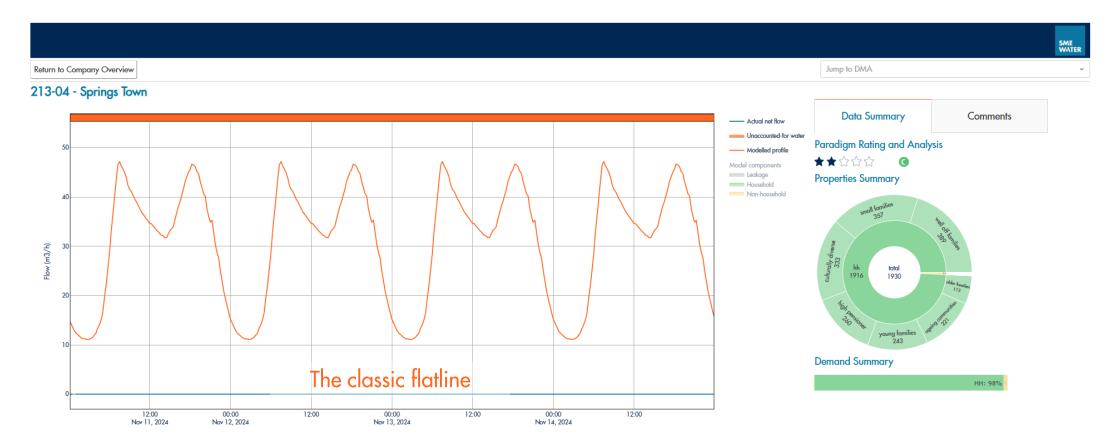
Data

48%

	Operable	Non- Operable	
Maintain	99%	1%	√
Leakage	96%	4%	√
Integrity (Demand)	99%	1%	?
Integrity (Physical)	98%	2%	x
Data	52%	48%	


N I

The Data category is used when the net flow bares little resemblance to the modelled profile



The Data category is used when the net flow bares little resemblance to the modelled profile

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%
	×	\checkmark

This is why using PCC operability for leakage targeting doesn't work...

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

This is why using PCC operability for leakage targeting doesn't work...

...we have areas we are doing the right thing...

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

N I - --

This is why using PCC operability for leakage targeting doesn't work...

...we have areas we are doing the right thing...

...but a lot of areas where we should be doing something different.

	Operable	Non- Operable
Maintain	99%	1%
Leakage	96%	4%
Integrity (Demand)	99%	1%
Integrity (Physical)	98%	2%
Data	52%	48%

N I

Paradigm vs Operability

Looking at the percentage of operable DMAs in each category...

	Operable	% of Op DMAs
Maintain	99%	40%
Leakage	96%	15%
Integrity (Demand)	99%	5%
Integrity (Physical)	98%	31%
Data	52%	9%

Paradigm vs Operability

Looking at the percentage of operable DMAs in each category...

	Operable	DMAs
Maintain	99%	40%
Leakage	96%	15%
Integrity (Demand)	99%	5%
Integrity (Physical)	98%	31%
Data	52%	9%

% of Op

...only 55% of operable DMAs can be targeted for leakage with confidence...

...40% of operable DMAs can't be targeted with confidence in the return

'Data' leakage blurs the picture

Courtney Connor, Leakage Technical Manager

We're now going to look at how UU's DMAs sit across the 5 categories...

...and explore what insight this gives us

	Leakage	UFW
Maintain	58%	63%
Leakage	J0 /⁄o	03%
Integrity (Demand)		
Integrity (Physical)	42%	37%
Data		

Calculated Paradiam

As a reminder...

Paradigm looks at UFW over the day – focusing on day, night and intraday analysis (m3/d)...

...whereas we're used to talking Leakage – using the fixed MNF window 03:00-04:00 (m3/hr)

Now let's introduce the idea of **confidence**...

...and start asking some important questions...

	Leakage	Paradigm UFW	Confidence
Maintain	58%	63%	2
Leakage	30%	03%	
Integrity (Demand)			?
Integrity (Physical)	42%	37%	?
Data			?

Calculated Days diam

Do our DMAs make sense?

Do we have the **correct** leakage targets?

Can we **trust** their calculated leakage figures?

Can we **action** them with confidence?

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	58%	63%	High
Leakage	J0 //o	03%	(Leakage)
Integrity (Demand)			
Integrity (Physical)	42%	37%	
Data			

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	58%	63%	High
Leakage	30 %	0376	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	
Data			

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	58%	63%	High
Leakage	30%	0376	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	58%	63%	High
Leakage	30%	0378	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	58%	63%	High
Leakage	30 / 0	03%	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

Around **60**% of calculated leakage and UFW sit in our high confidence areas...

But when we split by Maintain vs Leakage we get a different picture...

2/3 sits in the UFW Leakage category...

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	↓ 43%	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

Caladaral Danielian

But when we split by Maintain vs Leakage we get a different picture...

2/3 sits in the UFW Leakage category...

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

More accurate demand analysis gives us a better understanding of where leakage is

Improved DMA prioritisation

A regional, flexible approach to resource allocation

Improved targeting

But when we split by Maintain vs Leakage we get a different picture...

2/3 sits in the UFW Leakage category...

What about the 1/3 left in Maintain?

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

But when we split by Maintain vs Leakage we get a different picture...

2/3 sits in the UFW Leakage category...

What about the 1/3 left in Maintain?

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

Only 4% is targetable leakage (16% is background leakage)

> Background leakage challenge

But when we split by Maintain vs Leakage we get a different picture...

2/3 sits in the UFW Leakage category...

What about the 1/3 left in Maintain?

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

Only 4% is targetable leakage(16% is background leakage)

A whopping 37% is targetable (6% is background leakage)

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High (Leakage)
Leakage	28%	43%	
Integrity (Demand)			High (Demand)
Integrity (Physical)	42%	37%	Low
Data			None

Around 40% of UFW and calculated leakage sits in our lower leakage confidence areas...

Let's look at integrity issues...

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)	6%	6%	High (Demand)
Integrity (Physical)	20%	13%	Low
Data	17%	18%	None

Let's look at integrity issues...

...in some areas
Paradigm tells us we are
missing customer
demand...

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)	6%	6%	High (Demand)
Integrity (Physical)	20%	13%	Low
Data	17%	18%	None

6% of UFW we have been incorrectly targeting for leakage

We need to deploy demand analysis and investigation instead of leakage teams

> Find & fix missing demand

Let's look at integrity issues...

...in some areas
Paradigm tells us we are
missing customer
demand...

...in others metering and valve integrity, and configuration issues, are at play

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)	6%	6%	High (Demand)
Integrity (Physical)	20%	13%	Low
Data	17%	18%	None

 \sim 1 1 . 1 \sim

Now aware of issues in operable DMAs that we didn't know were impacting us

Recognise that we need to do more to improve and maintain DMAs

Let's look at data issues, two types are at play...

...short term equipment failure...

	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)	6%	6%	High (Demand)
Integrity (Physical)	20%	13%	Low
Data	17%	18%	None

Make sure we resolve equipment issues quickly and effectively

Ensure the wider business understands the impacts they have and make funding available

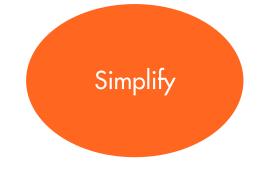
Resolve equipment issues faster

Collective responsibility

Let's look at data issues, two types are at play...

...short term equipment failure...

...and complex and difficult to understand DMAs


	Calculated Leakage	Paradigm UFW	Confidence
Maintain	30%	20%	High
Leakage	28%	43%	(Leakage)
Integrity (Demand)	6%	6%	High (Demand)
Integrity (Physical)	20%	13%	Low
Data	17%	18%	None

 \sim 1 1 . 1 \sim

Can we configure these areas to make them simpler?

OR

Can we improve data availability to make them analysable?

Prove our DMAs against Paradigm, then manage them when they deviate

Confidence Strategy

Maintain		✓ Respond to breakout
Leakage	High (Leakage)	 ✓ Actively target for detection ✓ Regional approach to prioritisation, maximising the return from existing levels of resource ✓ Continue to focus on 'Prevent' activities to reduce leakage
Integrity (Demand)	High (Demand)	 ✓ Respond to breakout ✓ Focus analytical effort on demand investigations ✓ Heighten our focus on data management and quality assurance
Integrity (Physical)	Low	 ✓ Respond to breakout ✓ Galvanise operational support to resolve physical integrity issues
Data	None	 ✓ Respond to breakout (where possible) ✓ Galvanise wider support to invest in equipment and simplify DMAs to make then calculation and detection friendly

In Summary

- Operability is important for reporting but isn't suitable for validating DMAs for leakage targeting

 → From targeting 92% of DMAs to focusing on 55%
- Targeting DMAs with high confidence allows our leakage teams to be more efficient and effective
- Promoting collective responsibility for our DMAs and doing the "Right Thing in the Right Place"
- Realising the importance of applying PALM to 'data' leakage
 - → Prevent data issues occurring through good maintenance and hygiene processes
 - Awareness of when things go wrong and reacting quickly to fix them
 - → Locating the source of the issue (and the team!)
 - → Mending the data issue promptly and in a sustainable way

Background leakage challenge

Improved targeting

Find & fix missing demand

Collective responsibility

Resolve equipment issues faster

Simplify

Any questions?