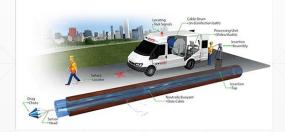


Universal Access Point for Water



Dr Leo Carswell, WRc

The Need and the Project Scope

Custom solutions

The scope of the project was purely to develop a design for a UAP4W.

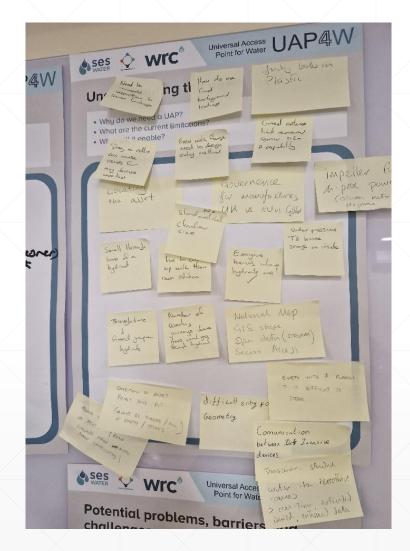
The project outputs used by manufacturers to develop prototypes.

Open innovation, with no intellectual property associated or claimed by the design.

Vision, Challenges and Specification

Our Vision of a Universal Access Point (UAP)

A 'UAP system' which is designed so that **additional functionality** can be added by users and suppliers. For example, specific fittings for sensors or solutions, systems to capture free flowing in pipe devices or technology to enable disinfection pre-deployment.


- Use for water company and their contractors only.
- Low maintenance and future-proof.
- Rapid installation of the UAP.
- For use on all common pipe materials.
- Standardised chamber size.
- Reducing future disruption for customers.

Potential Barriers and Challenges

- Water Quality
- Getting water companies and/or manufacturers on board
- How do you get into the pipe without a 90° bend which is likely to limit entry?
- Designing a solution which can operate in varying pressures and flow rates
- Enforcing installation on self-lay sites
- Familiarity of the UAP
- How do you remove the barrier of making time for installation?
- What is the optimum density of installations?
- In smaller mains there will be a restriction due to the pipe diameter
- Chambers = extra cost and time
- The locations where pipes fail

Design Specification

28-line items developed from a MoSCoW analysis, with either or both **preferred** and **minimum** requirements. Some examples....

Water quality - Reg31.

Design features - 100mm diameter standard entry point; 80mm is a minimum; no sharp edges...

Installation into the network - All pipe materials; 80-400mm pipe dimeter (min 100-300); time; skill; asset impact...

Operational use of the UAP - Number of people; skill; survey direction; insertion and removal; compatibility...

Maintenance - Minimum and a modular design...

Cost - Cost is less than the qualitative and quantitative benefits derived.

Health and safety - Operation is safer than the use of a hydrant.

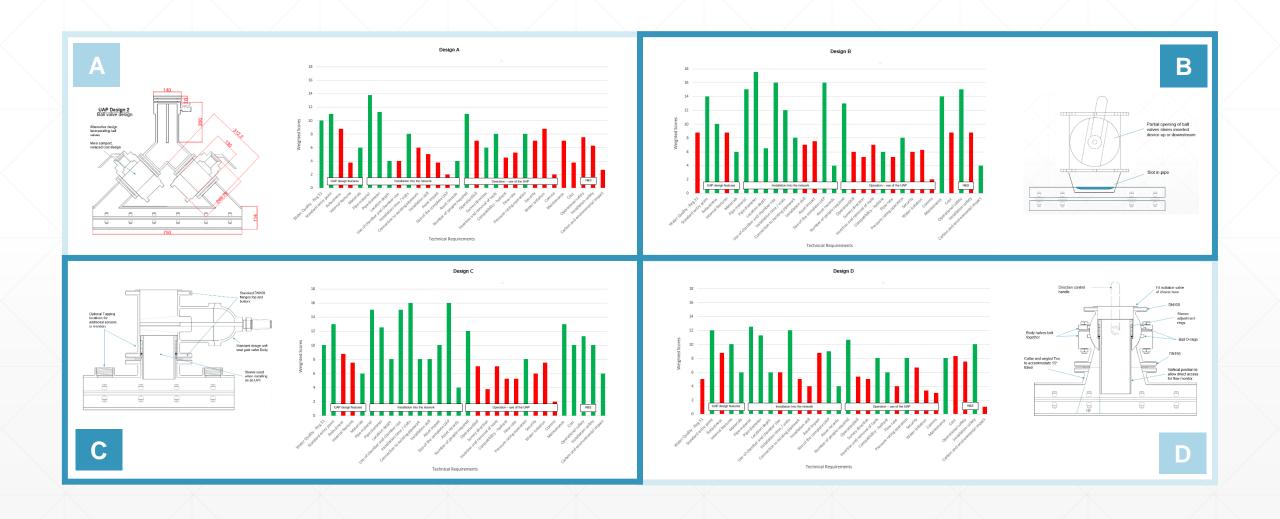
Economic Assessment

Important Use Cases and Benefits of UAP

Benefits	Use Cases	
Most Perceived Benefits	Most Important Use Cases	
Facilitating the use of Innovative Technologies/Techniques to facilitate renewals/repair	Pipe Condition Assessment	
Facilitating Non-Intrusive Repairs/Renewal Minimising Disruption/Costs	Access for Sensors/Robotic Devices	
Improve Leak Detection	Network (DMA) Leakage	
Least Perceived Benefit	Least Important Use Case	
Easier Pipe Isolation for Repairs	New Developments	

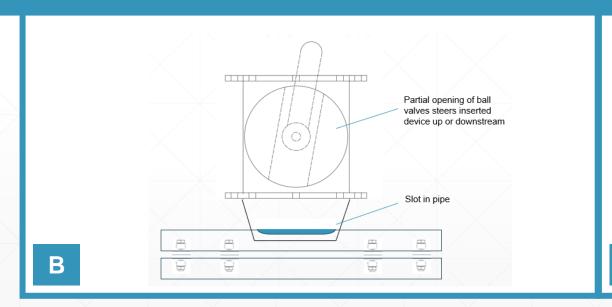
Demand Estimate

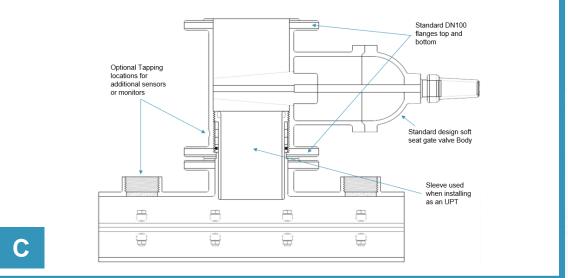
- A moderate estimate and market penetration (5% industry uptake)
- = 70,000 UAPs.
- At a high estimate (20% industry uptake)
- = 370,000 UAPs.
- If the UAP aligns with broader trends in innovation and infrastructure investment, uptake could extrapolate the upper-bound estimates
- = 1.3 million UAPs


Development of Design Ideas

Our Objectives

- Develop design ideas based on the specification.
- Engage with stakeholders to review, score and agree on the preferred aspects and design(s).


Stakeholder Assessment - Against the Design Specification



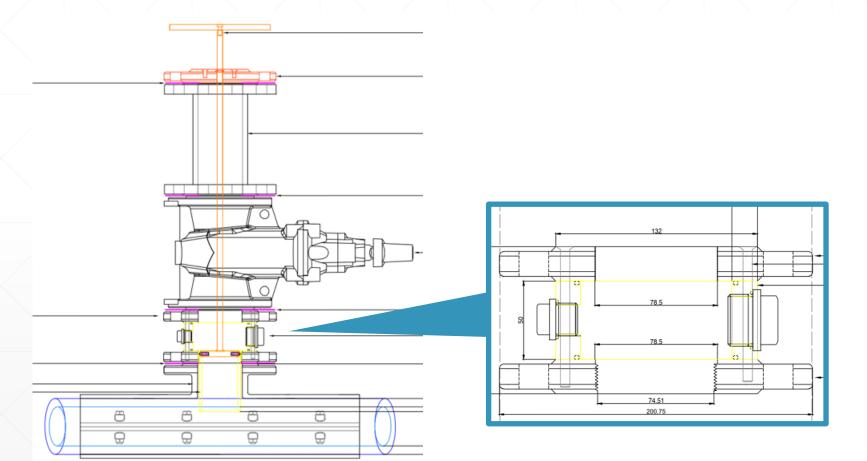
Design Refinement and Supply Chain Engagement

Our Objective

 Refine options down to a single 'preferred design' to take forward and consider manufacturing method.

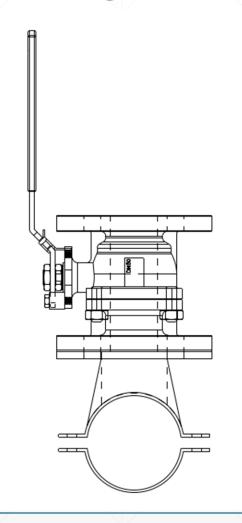
Live coring within a valve body that allows the full diameter of the pipe to be removed.

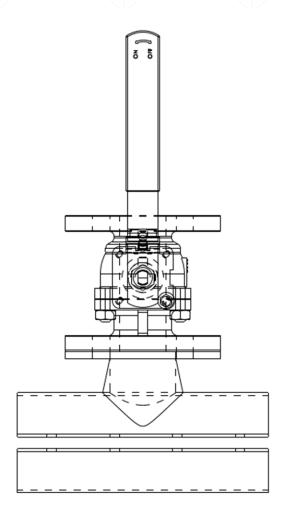
Live slot milling via rotated tool. 120° narrow slot around the pipe.

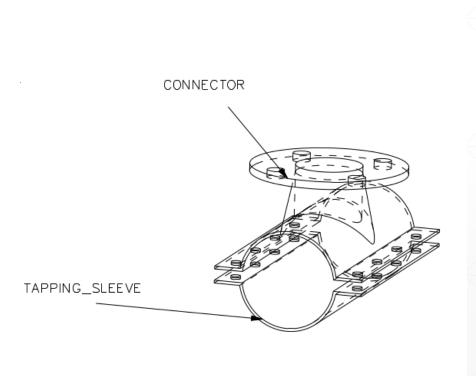

Live tapping technologies – how this fits in and what it enables

A range of live insertion line stop technologies available.

They are interesting to the project because they address two aspects:


- a) live coring/milling
- b) full-bore/pipe diameter material removal


Design C: Full entry, flexible fit valve with cut edge protection



Item	Variable	Material
Α	Sleeve Installation TeeBar	Mild Steel
В	Sleeve Installation flange	Standard Blank Flange Machined to take Tee and gland plate
С	Gasket	Nitrile Rubber
D	Installation Housing	Bought off shelf (WRAS Approved)
Е	Standard DN PN10/16 resilient rubber isolation valve	Bought off shelf (WRAS Approved)
F	Sleeve Housing	Bespoke housing using the same materials as a normal flange
	Standard Collar appropriate	Bought off shelf to suit pipe
G	for the pipe material with Standard DN PN 10/16 Tee	material (WRAS Approved)
Н	Pipe	In Situ
Item	Variable	
- 1	Tee Height (from crown of pipe to flange of Tee)	
J	Pipe wall thickness	
K	Sleeve projection into pipe	

Design B: Over-sized ball valve

Supplier Ready - Output

Two different UAP designs – developed and documented to a stage where a manufacturer can pick the idea up and start their own design refinement and commercialisation.

Two other designs - developed to an early stage

Dissemination event held – 15 Oct 2025 Ongoing water company and supplier engagement

What Next - We recognise any manufacturer will have their own way of taking forward the UAP

- Further detailed design & design for manufacture driven by cost and market size
- FEA and other tools
- Prototypes
- Testing
- Refinement
- Approvals
- Development of the project economic / market review