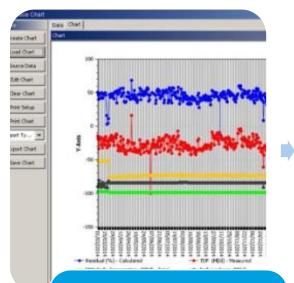


No-Dig Leak Repair: From Concept to Reality

Ofwat Innovation Fund WBC4 Transform Project

Tim Evans – Lead Water Network Scientist


25th Annual Leakage Conference, 2-3 December 2024 Birmingham Conference and Events Centre

Agenda

- 1. Traditional leak repair process
- 2. Why we're interested in no-dig repairs and what we mean by them
- 3. The journey to the project kicking-off
- 4. Technical requirements
- Technology concept and sub-system possibilities
- 6. Project headlines

Typical leak locating process – not the subject of this project

Targeting

- District Metered Area (DMA) analysis
- Acoustic loggers
- Hydraulic modelling
- Satellite image analysis
- Other methods

Detecting

- Listening stick (valves, hydrants, stop taps)
- Leak noise correlation
- Step testing

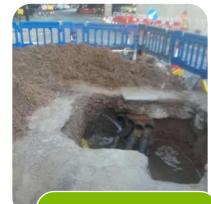
Pinpointing

- Listening stick
- Ground microphone
- Leak noise correlation

Marking-up

• Typically 1m square

Traditional dig-based leak repair process — what we want to innovate away from


Planning

- Traffic management
- Scheduling
- Liaison with highway authority / streetworks permit
- Operational enabling
- Customer notifications

Site set-up

- Signage and temporary traffic lights
- Guarding
- Buried utility tracing

Repair

- Excavation
- Pump-out
- Mains throttling/isolation
- Pipe repair

Make good

- Backfill
- Surface reinstatement

Site clearance

Water main failures and current repair methods

Failed joint seal

Failed repair

Ring fracture

Longitudinal fracture

Pinhole

Blow-out

Failed ferrule*

Repair clamp

Encapsulation collar

Pipe cut-out

Others:

- Welding
- Tape wrap
- Joint repair clamp

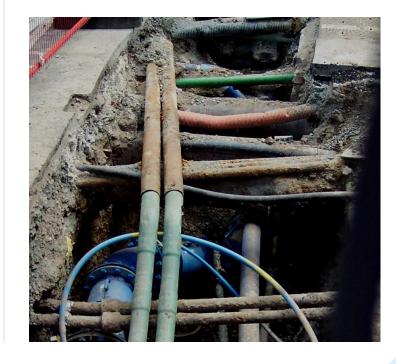
Ferrule exchange*

*ferrules aren't strictly considered to be part of the water main

Key issues with traditional repair

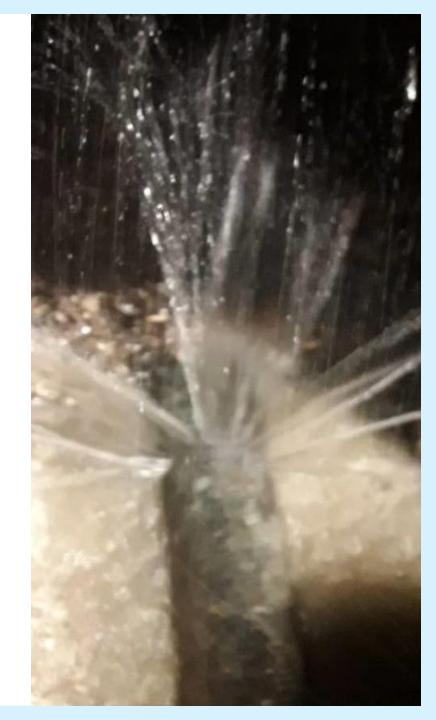
Cycle time

- More water lost through leakage
- Cost of multiple activities


Transport disruption

- Inconvenience, poor perception
- Societal cost

Damage to other utilities and roads

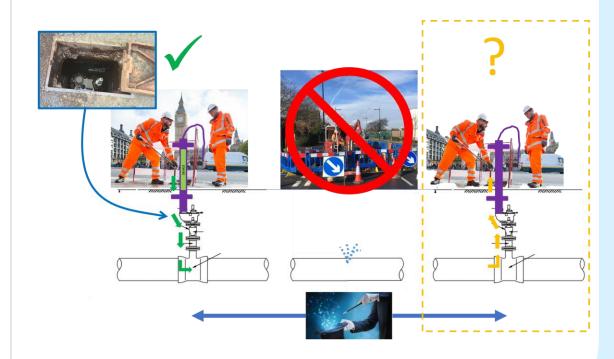

- Safety risk
- Additional costs

Why are we interested in no-dig leak repairs?

- [There's no need to tell the Annual Leakage Conference the scale of the UK's leakage problem!]
- Efforts to improve leakage solutions have focused on Aware and Locate, with less attention on Prevent and Mend
- Ramping-up traditional dig repairs?
 → disruptive (utility streetworks cost the UK economy >£7bn/yr)
- A repair solution that minimises/avoids interruptions to supply and traffic disruption could play a key role in meeting leakage targets

We're seeking to transform water mains repairs to increase the rate of leakage reduction whilst simultaneously reducing cost

What are we aiming to achieve?


- We're seeking a technology that can:
 - 1. enter a water main via existing/standard assets
 - 2. locate and identify the leak
 - 3. execute an internal repair and test it

and:

- requires no excavations
- won't cause any supply interruption
- minimises transport disruption
- can be completed faster than dig repairs
- is competitive on cost, H&S, carbon, etc

Our goal is to develop a prototype no-dig leak repair solution that's viable for commercialisation

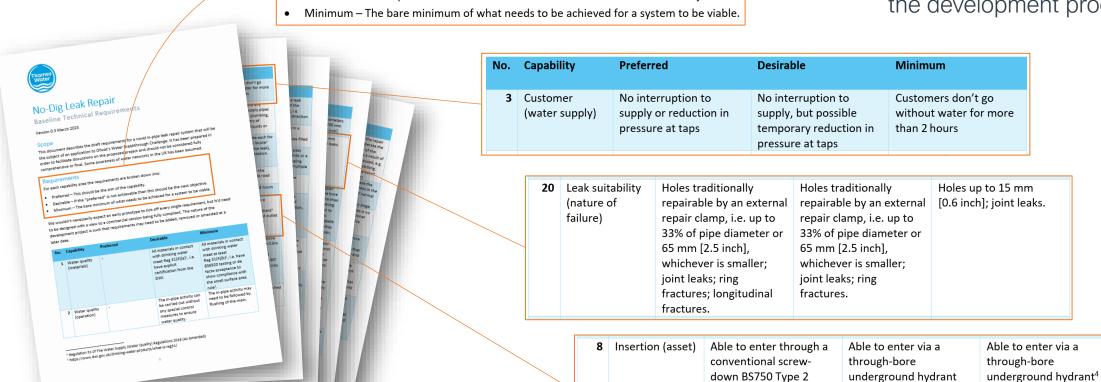
The ambitious vision

The journey to our project

- Developed a business case and technical requirements for a challenge-led project
- OIF WBC1 Transform proposal → not awarded
- Commissioned a technology review, secured £250k TfL funding and rewrote our submission
- OIF WBC2 Transform proposal → not awarded
- Discussions with Ofwat → execute the challenge-led aspect internally
- Hosted sprint at the 2022 Northumbrian Innovation Festival → industry and supply chain engagement and improved technical requirements
- Sourcing process for development partners → 6 bidders, from which 2 selected to carry out a Thames-funded concept development
- 2 credible project plans received → Synthotech chosen as our principal development partner (with ALH Systems and WRc)
- OIF WBC4 Transform proposal → awarded

Baseline technical requirements

For each capability area the requirements are broken down into:


- Preferred This should be the aim of the capability.
- Desirable If the "preferred" is not achievable then this should be the next objective.

- The project seeks to achieve at least the minimum level against each requirement, and in many cases higher than this
- Stretch targets also set, but may need some trade-offs as the development progresses

with the threaded outlet

removed (80 mm

[3 inch] bore)

underground hydrant or

other opening that's smaller than the target

pipe

with the threaded outlet

in place (50 mm [2 inch]

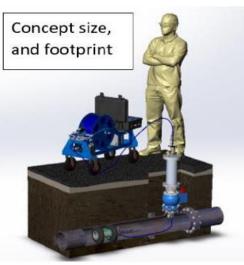

bore)

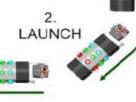
Illustration of how an in-pipe repair technology might work

Synthotech Concept for No-Dig Water Repair



- Not all sub-systems/ functionalities are depicted
- The sub-system concepts are purely indicative

7. SPRAY



WATER

LOWER

Sub-system technology stack

Could be used immediately
Transferrable technology
Development needed
Significant development needed

Assessment	Location	Access	Travel	Bypass	Cleaning	Preparation	Sealing	Testing	Void fill	Flushing	Recording
Assessment process	In-pipe CCTV (SynthoCAM)	SynthoCAM access systems	In-pipe rods (travel, sealant & flushing)	No bypass (Tainting potential)	Brushing/star (Serviflex live)	No preparation	Sealants (water tolerant)	Correlator (various)	Utility Drill (Access and process)	In-pipe flushing (WexTECH)	No recording
	Acoustics (PipeMIC)	Robotic access (S.Trax)	Pipeline manipulation (SynthoSeek)	Bag bypass (TORs, SealBack)	Shot / Flail (Standard –Live)	Rust treatment (e.g. Citric acid)	Patches (Flexible, rigid tapes, magnetic	Acoustic signal (PipeMIC)	Injection from defect (variable)	Main flushing (Hydrant to hydrant)	Robotic controllers
	Multi-spectral (LeakVISION)		Pipe robotics (travel, sealant & flushing)	Fin/ skirt (MCEX, SealBack)	Various Atherectomy	Adhesion primer	tapes, reinforced sealants)	Pressure bag testing (TORS, MCEX)		Flushing head (Additional)	iTouch platform
	GPR		Pipe drogues	External bypass	(many examples and process')	High pressure water	Internal Clamps (n.b. stents)	In-pipe CCTV (SynthoCAM)			CCTV displays
		MicroCORE and direct clip	Pipe Soft robotics	Ice bypass (freeze clamp)	Ultrasonics		Particles / Grouts				Water quality monitoring (downstream)
No assessment		SynthoCAM BS750 underground		Full bypass (Fast operation)	No cleaning (- Longevity)	Emerging e.g. MAPs – plastic adhesion	Welding (Friction, Laser, Ultrasonic)	No Test	No Fill (settlement & corrosion)	No Flushing (- water quality)	

OIF WBC4 Transform project headlines

£6.7M project running from October 2024 to January 2029

Collaboration

- Lead water company: Thames Water
- Principal delivery partner: Synthotech [with ALH Systems and WRc]
- Funding partners: DCWW, Southern Water, Transport for London
- Other partners: Affinity Water, Anglian Water, NWG, SES Water, Uisce Éireann Irish Water, Yorkshire Water, University of Sheffield

Project phases

- Phase 1: Concept Development (TRL4)
- Phase 2: Pilot Demonstration (TRL5)
- Phase 3: Whole System Demonstration (TRL6)
- Phase 4: Field Trials (TRL7)
- Phase 5: Knowledge Transfer (throughout)

Synergies with other OIF projects

 National Leakage Research & Test Centre (NLRTC), Designer Liner, Universal Access Point for Water (UAP4W)

Thank you